110 research outputs found

    CARDIOVASCULAR AND HEMODYNAMIC EFFECTS OF GLUCAGON-LIKE PEPTIDE-1

    Get PDF
    Glucagon-like peptide-1 (GLP-1) is an incretin hormone that has been shown to have hemodynamic and cardioprotective capacity in addition to its better characterized glucoregulatory actions. Because of this, emerging research has focused on the ability of GLP-1 based therapies to drive myocardial substrate selection, enhance cardiac performance and regulate heart rate, blood pressure and vascular tone. These studies have produced consistent and reproducible results amongst numerous laboratories. However, there are obvious disparities in findings obtained in small animal models versus those of higher mammals. This species dependent discrepancy calls to question, the translational value of individual findings. Moreover, few studies of GLP-1 mediated cardiovascular action have been performed in the presence of a pre-existing comorbidities (e.g. obesity/diabetes) which limits interpretation of the effectiveness of incretin-based therapies in the setting of disease. This review addresses cardiovascular and hemodynamic potential of GLP-1 based therapies with attention to species specific effects as well as the interaction between therapies and disease

    Relationship of dysglycemia to acute myocardial infarct size and cardiovascular outcome as determined by cardiovascular magnetic resonance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Improved outcomes for normoglycemic patients suffering acute myocardial infarction (AMI) over the last decade have not been matched by similar improvements in mortality for diabetic patients despite similar levels of baseline risk and appropriate medical therapy. Two of the major determinants of poor outcome following AMI are infarct size and left ventricular (LV) dysfunction.</p> <p>Methods</p> <p>Ninety-three patients with first AMI were studied. 22 patients had diabetes mellitus (DM) based on prior history or admission blood glucose ≥11.1 mmol/l. 13 patients had dysglycemia (admission blood glucose ≥7.8 mmol/l but <11.1 mmol/l) and 58 patients had normoglycemia (admission blood glucose <7.8 mmol/l). Patients underwent cardiac magnetic resonance (CMR) imaging at index presentation and median follow-up of 11 months. Cine imaging assessed LV function and late gadolinium contrast-enhanced imaging was used to quantify infarct size. Clinical outcome data were collected at 18 months median follow-up.</p> <p>Results</p> <p>Patients with dysglycemia and DM had larger infarct sizes by CMR than normoglycemic patients; at baseline percentage LV scar (mean (SD)) was 23.0% (10.9), 25.6% (12.9) and 15.8% (10.3) respectively (p = 0.001), and at 11 months percentage LV scar was 17.6% (8.9), 19.1% (9.6) and 12.4% (7.8) (p = 0.017). Patients with dysglycemia and DM also had lower event-free survival at 18 months (p = 0.005).</p> <p>Conclusions</p> <p>Patients with dysglycemia or diabetes mellitus sustain larger infarct sizes than normoglycemic patients, as determined by CMR. This may, in part, account for their adverse prognosis following AMI.</p

    Glucagon-like peptide-1 (7-36) but not (9-36) augments cardiac output during myocardial ischemia via a Frank-Starling mechanism

    Get PDF
    This study examined the cardiovascular effects of GLP-1 (7-36) or (9-36) on myocardial oxygen consumption, function and systemic hemodynamics in vivo during normal perfusion and during acute, regional myocardial ischemia. Lean Ossabaw swine received systemic infusions of saline vehicle or GLP-1 (7-36 or 9-36) at 1.5, 3.0, and 10.0 pmol/kg/min in sequence for 30 min at each dose, followed by ligation of the left circumflex artery during continued infusion at 10.0 pmol/kg/min. Systemic GLP-1 (9-36) had no effect on coronary flow, blood pressure, heart rate or indices of cardiac function before or during regional myocardial ischemia. Systemic GLP-1 (7-36) exerted no cardiometabolic or hemodynamic effects prior to ischemia. During ischemia, GLP-1 (7-36) increased cardiac output by approximately 2 L/min relative to vehicle-controls (p = 0.003). This response was not diminished by treatment with the non-depolarizing ganglionic blocker hexamethonium. Left ventricular pressure-volume loops measured during steady-state conditions with graded occlusion of the inferior vena cava to assess load-independent contractility revealed that GLP-1 (7-36) produced marked increases in end-diastolic volume (74 ± 1 to 92 ± 5 ml; p = 0.03) and volume axis intercept (8 ± 2 to 26 ± 8; p = 0.05), without any change in the slope of the end-systolic pressure-volume relationship vs. vehicle during regional ischemia. GLP-1 (9-36) produced no changes in any of these parameters compared to vehicle. These findings indicate that short-term systemic treatment with GLP-1 (7-36) but not GLP-1 (9-36) significantly augments cardiac output during regional myocardial ischemia, via increases in ventricular preload without changes in cardiac inotropy

    Obesity Alters Molecular and Functional Cardiac Responses to Ischemia-Reperfusion and Glucagon-Like Peptide-1 Receptor Agonism

    Get PDF
    This study tested the hypothesis that obesity alters the cardiac response to ischemia/reperfusion and/or glucagon like peptide-1 (GLP-1) receptor activation, and that these differences are associated with alterations in the obese cardiac proteome and microRNA (miRNA) transcriptome. Ossabaw swine were fed normal chow or obesogenic diet for 6 months. Cardiac function was assessed at baseline, during a 30-minutes coronary occlusion, and during 2 hours of reperfusion in anesthetized swine treated with saline or exendin-4 for 24 hours. Cardiac biopsies were obtained from normal and ischemia/reperfusion territories. Fat-fed animals were heavier, and exhibited hyperinsulinemia, hyperglycemia, and hypertriglyceridemia. Plasma troponin-I concentration (index of myocardial injury) was increased following ischemia/reperfusion and decreased by exendin-4 treatment in both groups. Ischemia/reperfusion produced reductions in systolic pressure and stroke volume in lean swine. These indices were higher in obese hearts at baseline and relatively maintained throughout ischemia/reperfusion. Exendin-4 administration increased systolic pressure in lean swine but did not affect the blood pressure in obese swine. End-diastolic volume was reduced by exendin-4 following ischemia/reperfusion in obese swine. These divergent physiologic responses were associated with obesity-related differences in proteins related to myocardial structure/function (e.g. titin) and calcium handling (e.g. SERCA2a, histidine-rich Ca2+ binding protein). Alterations in expression of cardiac miRs in obese hearts included miR-15, miR-27, miR-130, miR-181, and let-7. Taken together, these observations validate this discovery approach and reveal novel associations that suggest previously undiscovered mechanisms contributing to the effects of obesity on the heart and contributing to the actions of GLP-1 following ischemia/reperfusion

    Collateral donor artery physiology and the influence of a chronic total occlusion on fractional flow reserve

    Get PDF
    Background— The presence of a concomitant chronic total coronary occlusion (CTO) and a large collateral contribution might alter the fractional flow reserve (FFR) of an interrogated vessel, rendering the FFR unreliable at predicting ischemia should the CTO vessel be revascularized and potentially affecting the decision on optimal revascularization strategy. We tested the hypothesis that donor vessel FFR would significantly change after percutaneous coronary intervention of a concomitant CTO. Methods and Results— In consecutive patients undergoing percutaneous coronary intervention of a CTO, coronary pressure and flow velocity were measured at baseline and hyperemia in proximal and distal segments of both nontarget vessels, before and after percutaneous coronary intervention. Hemodynamics including FFR, absolute coronary flow, and the coronary flow velocity–pressure gradient relation were calculated. After successful percutaneous coronary intervention in 34 of 46 patients, FFR in the predominant donor vessel increased from 0.782 to 0.810 (difference, 0.028 [0.012 to 0.044]; P=0.001). Mean decrease in baseline donor vessel absolute flow adjusted for rate pressure product: 177.5 to 139.9 mL/min (difference −37.6 [−62.6 to −12.6]; P=0.005), mean decrease in hyperemic flow: 306.5 to 272.9 mL/min (difference, −33.5 [−58.7 to −8.3]; P=0.011). Change in predominant donor vessel FFR correlated with angiographic (%) diameter stenosis severity (r=0.44; P=0.009) and was strongly related to stenosis severity measured by the coronary flow velocity–pressure gradient relation (r=0.69; P&lt;0.001). Conclusions— Recanalization of a CTO results in a modest increase in the FFR of the predominant collateral donor vessel associated with a reduction in coronary flow. A larger increase in FFR is associated with greater coronary stenosis severity
    corecore